octahedral$54529$ - definizione. Che cos'è octahedral$54529$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è octahedral$54529$ - definizione

GRAPH
Turan graph; Cocktail party graph; Octahedral Graph; Octahedral graph
  • The [[octahedron]], a 3-[[cross polytope]] whose edges and vertices form ''K''<sub>2,2,2</sub>, a Turán graph ''T''(6,3). Unconnected vertices are given the same color in this face-centered projection.

Order-5 octahedral honeycomb         
  • 50px
  • 40px
  • 40px
  • 40px
  • 40px
  • 40px
  • 240px
  • 240px
  • 240px
  • 240px
  • 240px
  • 40px
  • 40px
TESSELATION IN REGULAR SPACE
Order-6 octahedral honeycomb; Infinite-order octahedral honeycomb; Order-7 octahedral honeycomb; Order-8 octahedral honeycomb
In the geometry of hyperbolic 3-space, the order-5 octahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,4,5}. It has five octahedra {3,4} around each edge.
Octahedral symmetry         
  • 48 symmetry elements of a cube
  • 12px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 180px
  • 100px
  • 100px
  • 100px
  • Subgroups ordered in a Hasse diagram
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 25px
  • 12px
  • 100px
  • 100px
  • 60px
  • 60px
  • Hexahedron (cube)
  • Octahedron
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 12px
  • 100px
  • 100px
  • 40px
  • 40px
  • 40px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
3D SYMMETRY GROUP
Octahedral group; Cubic symmetry; Cubical symmetry; Cube group; Full octahedral symmetry; 432 symmetry; Full octahedral group; Cuboctahedral Symmetry; Cubic Symmetry; Chiral octahedral symmetry
A regular octahedron has 24 rotational (or orientation-preserving) symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation.
Cubic-octahedral honeycomb         
  • 160px
  • 120px
  • 120px
  • 40px
  • 160px
  • 240px
Cube-octahedron honeycomb; Truncated cubic-octahedral honeycomb; Cyclotruncated octahedral-cubic honeycomb; Cyclosnub octahedral-cubic honeycomb; Cyclotruncated cubic-octahedral honeycomb; Rectified cubic-octahedral honeycomb; Omnitruncated cubic-octahedral honeycomb; Omnisnub cubic-octahedral honeycomb
In the geometry of hyperbolic 3-space, the cubic-octahedral honeycomb is a compact uniform honeycomb, constructed from cube, octahedron, and cuboctahedron cells, in a rhombicuboctahedron vertex figure. It has a single-ring Coxeter diagram, , and is named by its two regular cells.

Wikipedia

Turán graph

The Turán graph, denoted by T ( n , r ) {\displaystyle T(n,r)} , is a complete multipartite graph; it is formed by partitioning a set of n {\displaystyle n} vertices into r {\displaystyle r} subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q {\displaystyle q} and s {\displaystyle s} are the quotient and remainder of dividing n {\displaystyle n} by r {\displaystyle r} (so n = q r + s {\displaystyle n=qr+s} ), the graph is of the form K q + 1 , q + 1 , , q , q {\displaystyle K_{q+1,q+1,\ldots ,q,q}} , and the number of edges is

( 1 1 r ) n 2 s 2 2 + ( s 2 ) {\displaystyle \left(1-{\frac {1}{r}}\right){\frac {n^{2}-s^{2}}{2}}+{s \choose 2}} .

The graph has s {\displaystyle s} subsets of size q + 1 {\displaystyle q+1} , and r s {\displaystyle r-s} subsets of size q {\displaystyle q} ; each vertex has degree n q 1 {\displaystyle n-q-1} or n q {\displaystyle n-q} . It is a regular graph if n {\displaystyle n} is divisible by r {\displaystyle r} (i.e. when s = 0 {\displaystyle s=0} ).